
Design Report
FMT: ETAPS Conference
Management System v1.1

Luna Peshkov, s2782200 Manya Narkar, s2297809
Harm Dreteler, s2337568 Egor Krasnoperov, s2384361

Stefan Simionescu, s2391821
Robert-Jan Nijhuis, s2621517

Supervised by: Dr. Marieke Huisman

19th April, 2024

1

Contents

1 Introduction 4
1.1 ETAPS and committees . 4
1.2 Existing program and motivation for improvement 4
1.3 Existing functionalities and development approach 4
1.4 User interfaces . 5
1.5 Enhancements and contributions 5

2 Responsibilities 7
2.1 The team . 7
2.2 Roles . 7

2.2.1 Overall developer . 7
2.2.2 Senior developer . 8
2.2.3 Project management 8
2.2.4 External communications 9
2.2.5 Cross platform engineer 9
2.2.6 Code reviewer . 9

3 Process 10
3.1 Development Methodology . 10
3.2 Client Meetings . 10
3.3 Technologies Used . 11
3.4 Planning . 12

4 Requirement Specification 13
4.1 Stakeholders . 13
4.2 Requirement prioritization . 13
4.3 User Stories . 15

5 Updates 17

6 Design 23
6.1 Admin Interface . 23

6.1.1 Conference Creation 24
6.1.2 Selection Committee 24
6.1.3 Account Management 24

6.2 Non-Admin Interface . 25
6.2.1 Sessions . 25
6.2.2 Committee Selection 26
6.2.3 Overview . 26

2

7 Risk Analysis 27
7.1 Risks within Team . 27
7.2 Risks within Project . 28

8 Testing 29
8.1 Manual testing . 29
8.2 Unit testing . 29

9 Conclusion 32

10 Future Work 33

11 APPENDIX 35

A
GANTT Chart for Planning 35

B
Sorting and Filtering 36

C
Duplicate detection 37

3

1 Introduction

1.1 ETAPS and committees

The European joint conferences on Theory And Practice of Software (ETAPS)
[1] is a non-profit association that addresses the dissemination of information
relating to the field of Computer Science. It is a confederation of four main
committees: ESOP, FASE, FoSSaCS and TACAS, which cover topics related
to software systems, such as compiler advancements, formal approaches to
software engineering and security, among others. ETAPS conducts a main
conference program that takes place annually, during which researchers sub-
mit and present their research in various sessions, as well as get an opportu-
nity to interact with other researchers.

1.2 Existing program and motivation for improvement

A crucial part of this conference program is the organization of it. It is impor-
tant for the chairs of each committee to be able to schedule these sessions, and
for the steering chair to oversee and finalize the same whilst ensuring there
are no conflicts. To facilitate various management aspects of this confer-
ence program, a conference management system was developed. Our project
builds upon an existing web application - originally developed by a previous
group - to introduce significant enhancements and address critical areas of
improvement. The existing conference support system has laid an excellent
foundation for processing and planning various aspects of the digital con-
ferences. However, through a thorough analysis, there are several identified
areas of improvement. This design report provides a complete documenta-
tion of the enhancements and changes introduced into the ETAPS convention
management software. It emphasizes the underlying motivations behind the
changes, insights into methodologies employed in the implementation, and
gives a clear picture of expected benefits and effect on the stakeholders.

1.3 Existing functionalities and development approach

The existing conference support system has made numerous activities possi-
ble for the user from 2 parts of the system: the conference scheduling system
and the committee seat system. For the conference Scheduling system the
already existing functionalities are: creating a schedule, adding a conference
program, exporting program in YAML [2]; which can be used by the ETAPS
website to display the conference programs. For the committee seat system
the existing functionalities are : adding a new committee, accepting com-

4

mittee members, confirming participants. Moreover, the project group went
through extensive consultations with the client and created user stories that
acted as a blueprint for system enhancement. These user stories laid down
the requirements and the expectations of stakeholders to guide the develop-
ment process. Next, tasks were meticulously crafted and distributed among
group members, every task being labeled with the categories of importance,
with ”must have,” ”could have,” ”should have,” and ”bugs”. The most criti-
cally needed tasks were organized with a priority tag according to how much
value they added to the functionality and usability of the system.

1.4 User interfaces

Furthermore, it is necessary to consider that the conference management sys-
tem is used by two distinct user interfaces: the administrative side and the
non-administrative side. Each side has a different purpose for it, focusing on
the roles and needs of the users. The administrative side enables authorized
personnel to perform overall management and coordination of the conference
proceedings effectively and efficiently. Besides the non-admin functionalities,
the admin side can export a program in YAML format, can manage user
accounts, edit conference committees, nomitate best papers. The other side,
the non-administrative side, is crafted for providing participants and contrib-
utors with a simple and easy-to-use interface to take part in the conference
schedule, see committees, as well as editing committees and it’s members,
upload papers in conferences, adding presentations.

1.5 Enhancements and contributions

The wide range of enhancements that has been put in place covers function-
alities and features, which are being optimized for general user experience
and operational efficiency within conference management systems. This com-
prises functionalities like enhancing the user interface and adding advanced
features such as CSV imports/exports and automation processes; hence, it
becomes an apparatus set to minimize manual intervention, streamline work-
flow, and facilitate collaboration in a collaborative and effective environment.
Our contributions to the ETAPS conference control system are featured in
this report, and they include improving the entire system in a number of
ways:

• Package Updates: Since the system was developed last year, there was
quite a list of package updates to be made. This is mostly a mainte-
nance task to prevent issues with running out of date packages.

5

• User Interface Improvements: Improving accessibility and aesthetics
to make the interface more user-friendly in response to stakeholder
complaints on usability.

• Feature Enhancement: Add features such as CSV import/export, first-
class paper choice, and swapping of time tables to complement the
current program.

• Automation: Automate a number of routine tasks that free up the user
from routine work and help in streamlining the administrative tasks.

• Optimization: Seek out and remedy bugs and step up the performance
for a more smooth operation of the program.

6

2 Responsibilities

2.1 The team

The process of building this system was driven by a dedicated team of stu-
dents from the University of Twente. Together, we were able to shed light
on differing perspectives and collaborate in order to successfully create and
deliver a product aligning with our clients expectations and requirements. A
notable mention to Stefan Simionescu who due to personal circumstance had
to participate remotely.
The team is comprised of: Luna Peshkov, Manya Narkar, Harm Dreteler,
Egor Krasnoperov, Stefan Simionescu and Robert-Jan Nijhuis.

2.2 Roles

Name Roles

Luna Peshkov Senior developer, Code reviewer

Stefan Simionescu Overall developer

Manya Narkar Overall developer, External communication

Harm Dreteler

Egor Krasnoperov Overall developer, Project management, Cross-platform engineer

Rober-Jan Nijhuis Overall developer, Project management

Table 1: Roles and responsibilities of members

2.2.1 Overall developer

An overall developer oversees the entire development process and imple-
ments the tasks that they were assigned. A more detailed explanation of
their responsibilities:

7

• Task Creation: At the initial stage, all overall developers take part in
the stakeholder meetings to extract the user requirements.They should
understand these requirements fully to be able to create relevant, brief
tasks that will later be implemented.

• Code Quality Assurance: Ensures that the code quality has been main-
tained to an expected level throughout the implementation process.
This includes code review and maintenance of ”clean code.”(refference
to Clean Code uncle bob)

• Optimization of Performance: They manage the performance optimiza-
tion of both frontend and backend by optimizing code to ensure faster
response times, and making sure that the implemented code is effec-
tively using resources.

• Integration and Review: The overall developer is responsible for review-
ing the pull requests of other team members to ensure that the code on
the main branch is up to standards and that no bugs are introduced
by mistake.

2.2.2 Senior developer

A senior developer has the same responsibilities as an overall developer
(2.2.1), but has more experience and therefore can take on more difficult
features and implement features faster.

2.2.3 Project management

Out of the 6 members, we have assigned 2 of them for project management,
which entails planning the meetings and supervising team progress. Their
responsibilities are:

• Planning and Scheduling: The project managers are in charge of mak-
ing a coherent plan in order to ensure the delivery of the assignments
and the availability of members in the arranged meetings.

• Scrum Masters: These teammates are responsible for conducting and
guiding the stand up meetings. They help monitor the teams goals and
guide teammates into working effectively in the case of obstacles.

8

2.2.4 External communications

Our team has appointed one member for external communications. They
were responsible for ensuring clear communication and addressing concerns
with our clients through the project. Their responsibilities include:

• Point of Contact: They are the primary point of contact for clients,
professors and supervisors and reach out to them on behalf of the group
for communication.

• Distributing Information: They are responsible for receiving and dis-
tributing information received from clients to the group as and where
required.

2.2.5 Cross platform engineer

Since we had team-members working on both Linux and Windows, a member
using both operating systems was assigned to address any inconsistencies or
issues.

2.2.6 Code reviewer

A code reviewer reviews all the pull requests on GitHub and gives helpful
feedback for code authors to improve their code. They also approve and
merge the pull requests once they are in a satisfactory state.

9

3 Process

This section will detail the process of development throughout the project.
This section will further include: communication methods, software develop-
ment method, and tools employed to make the above feasible.

3.1 Development Methodology

For this project, the team decided to deploy an Agile methodology [3] of de-
velopment. Since the goal of the project was to enhance an existing system,
discovering varying existing bugs and evolving requirements was but natural.
Hence, this method of development was chosen due to the dynamic nature
of the project requirements. The approach revolves around incremental and
iterative steps leading to the completion of projects. These steps are organ-
ised into development cycles known as sprints. Stand-up meetings to share
progress - known as scrum meetings - were also employed. During the first
two weeks of development, each sprint was 7 days long, and each scrum meet-
ing took place daily. Eventually, as the system was set up successfully and
each team member was more familiarised with their task(s), the scrum meet-
ings took place twice a week - on Mondays and Thursdays. Following this,
the team would proceed to work together in order to resolve any potential
obstacles that anyone encountered. A popular framework used to implement
Agile software development is the Kanban methodology. This has more to do
with the project management aspect of the development and requires com-
munication and transparency of work. We used Trello to recreate a Kanban
template for the planning and organization of our tasks.

3.2 Client Meetings

Involving our clients in this development process and incorporating their feed-
back to improve the system is an important feature of agile development. For
the project, the team maintained close collaboration with the stakeholders
- meeting once almost every week: on Fridays at 13.00. This ensured our
alignment with their expectations, and their awareness of our progress. At
the near end of every sprint, a meeting with the clients was held where we
not only revised and reconfirmed requirements but also showcased updates
we had. The client further had the opportunity to accept or warrant changes
from certain features based on their requirements.

10

3.3 Technologies Used

• MongoDB [4]: This NoSQL document-based database: MongoDB was
used for the project. We decided to continue with this due to the
positive experience of the previous team with the technology.

• React [5]: For our frontend development, we utilised the JavaScript
library: React, to make the web interfaces. The component-based
architecture allowed us to reuse various components, promoting code
reusability.

• FastAPI [6]: FastAPI is an open-source Python framework for web de-
velopment and the technology we used for our backend. The API end-
points, routes and models, helped facilitate communication between the
frontend and backend. It also provided support for integrating Create,
Read, Update and Delete (CRUD) operations to database entries.

• Docker [7]: This is an open-source platform that aids the creation,
deployment and management of virtualized application containers. We
opted to use Docker to enable a consistent setup of the development
environment across every team members’ system. This ensured every
team member had the necessary configurations and dependencies to
reproducibly run the system.

• GitHub [8]: Version control is crucial for facilitating coordination, shar-
ing and collaboration among a software development team. One pop-
ular DevOps tool that further aids in source code management is Git.
Although, we had originally intended on using GitLab - we switched
to GitHub to ensure repository access for our clients. Team members
worked on their own branches for varying tasks, and then created pull
requests before merging their branch with main. This allowed for a
peer review of said branch before the merge.

• Trello [9]: To ensure proper task management, our team used the Trello
collaboration tool. Organised into varying boards, this tool allows for
separating, explaining and assigning different tasks in a group setting.
The requirements for the project were divided based on the MoSCoW
model, and the trello lists were created based on the same - where every
list represented a priority level in the model, and entries on the board
represented project requirements. We further assigned tasks to mem-
bers and had additional lists to track what tasks were under ’Doing’
and ’Done’.

11

• Discord [10]: Effective communication within the team was crucial to
success. We used Discord chats and voice calls as our primary commu-
nication platform. This served as a centralized platform for updates,
questions, discussions and fostering a pleasant team atmosphere. All
stand-ups were conducted via discord, as well as the sessions on Mon-
days and Thursdays when we were required to work together. In addi-
tion to online communication, the team also met physically once every
week: on Tuesdays. These meetings allowed for efficient brain-storming
and collaborative sessions. We also used discord events as a reminder
of upcoming client meetings and such.

3.4 Planning

The duration of this project had been set to 9 weeks. After the initial sys-
tem set-up and requirement elicitation, sessions were divided into sprints -
each of 7 days - to work on implementing certain requirements. Due to the
iterative nature of this development methodology, each sprint involved re-
viewing/listing (new) requirements, developing and then testing them. Once
every week, we had a meeting with the client to gain feedback on the process.
Alongside this, our schedule also accounted for documents required for the
module, such as the ethics report, and other deadlines. A visual depiction of
our planning can be found in the form of a GANTT chart in the appendix
of the report.
The time had been split up into 5 Sprints. It also consists of time taken
for complementary assignments such as the Ethics Report, Project Proposal,
Test plan, and feedback for the same. Additionally, weekly once it can be
seen that a meeting with our clients has been scheduled as well.

12

4 Requirement Specification

4.1 Stakeholders

• ETAPS system admin

• Committee chair

Both of these stakeholders correlate with roles that are given to people using
the system, each being granted a different level of access. The ETAPS system
admin has extra permissions and all the permissions of the committee chair.
As such, they also inherit all the user stories of the committee chair.

4.2 Requirement prioritization

The delivery of a successful project relies on the ability to encapsulate the
clients requirements well. Requirement elicitation is the first step in this. It
includes systematically acquiring, analysing and understanding the require-
ments in order to produce a system that aligns with these needs. Once our
requirements had been elicited, we deemed it important to prioritise them
to ensure optimal project management and resource allocation. For this, we
used the MoSCoW method [11]. This divides the requirements in four dis-
tinct categories: Must have, Should have, Could have and Won’t have. The
requirements in Must have are expected to be finished during this project
and the main focus, and the lower categories only become prioritized when
Must requirements are sure to be completed. On the other hand, items in the
Won’t have category are not expected to be reached within this project. We
further confirmed the prioritisation of these requirements with our clients to
ensure the development foundations were closely aligned with their expecta-
tions.

Must have:

• Allow archiving of earlier years and their versions.

• Warning on duplicates such as: Allow speakers submissions to not have
duplicate papers.

• Allow participants to see every (unpublished) schedule

• Allow participants to leave conferences without affecting the rest of the
system adversely.

• Filtering of talks, where it is possible to filter on multiple attributes
and extended latin characters.

13

• Delete floating papers after session deletion.

• Allow sessions that are scheduled in parallel to give a warning when an
author is at the same time slot more than once.

Should have:

• Allowance for track chair and program committee to edit schedules.

• Post updates to schedule on the designated page/in the designated
section.

• Make warnings such as those for ‘duplicates’ sufficiently descriptive,
informing users about what they are, which committee they’re in, etc.

• Double name warning does not currently work entirely.

• Minimized hardcoded features.

• Improved user interface

• Allow committees to see the schedules of other committees without
having to go back to the previous page.

• Allow nomination of best paper.

• Allow adding sessions to a conference.

Could have:

• An automated deployment pipeline to make further changes easier

• Update schedule automatically once changes in the schedule are made.

• Coloring sessions and adding color to the database and to export files.

• Frontend improvements

• Security improvements

• Collect front end improvements

• Dark mode

• Updating packages

• Allow paper export via Excel

14

• Make papers accessible to users through means other than just through
the database, eg., list all the papers somewhere.

• The application should detect and handle database failure gracefully.

Won’t have:

• Unnecessary complexity

• Cloud database only

4.3 User Stories

As a team, we decided to put users at the center of the development process,
hence adopting a user-centric approach to the development process. To im-
plement this, we further adopted user stories so that the requirements could
be encapsulated from the perspective of an end-user. This helped further our
understanding of the system and requirements. The user stories identified
are as follows.

As an ETAPS system admin, I want to:

• Archive earlier years and versions of the conference.

• The database to be as dynamic as possible and have a minimum of
hardcoded assertions.

• Have an automated deployment pipeline to make further changes easier.

• Have the schedule update automatically once changes are made.

• Have coloured sessions, and save these colours in the database and
export files.

• Have the security of the program be improved

• Have an application that detects and handles database failure grace-
fully.

As a committee chair, I want to:

• Nominate a paper for best paper.

• Add a session to a conference.

15

• Receive a warning if a paper is a duplicate of another paper in the
system

• Automatically delete the paper that is tied to a session that I delete.

• Edit the conference schedule.

• Post updates to schedule on the designated page/in the designated
section.

• Receive informative warnings about duplication issues, informing me
about what they are, which committee they’re in, etc.

• Receive a warning if a name I am trying to add is already in the system.

• Have convenient access to schedules of other committees, without hav-
ing to look through previous pages.

• See the selections of other committees.

• Import and export the program with csv or yaml.

• Receive a warning before I permanently delete something.

• See every schedule, published and unpublished

• Leave the conference without disrupting the system

• Search and filter based on multiple attributes and extended latin char-
acters

• See a warning if a speaker is scheduled for more than once for a single
time slot.

• Have an intuitive and functional user interface.

• Switch to dark mode.

• Have access to all the papers without going through the database.

• See what committee something belongs to in the general overview

16

5 Updates

Version 1.1 of the ETAPS Conference Management System represents a ma-
jor step in responsiveness to client feedback and improving the overall user
experience of the system. As a team, we were able to complete all the require-
ments from the ”Must Have” and ”Should Have” sections of requirements
from the MoSCoW model in section 4.2. This section will highlight some key
updates of this version such as additional features and fixed bugs.

1. Archived Years: Originally, immediately upon logging in, the admin
and non-admin users would be required to manually select the current
- or any other year of their choice, for the details such as schedules and
committees corresponding to those years to be loaded. In the updated
version, the page loads on the current year by default. The choice to
select other years is still retained.

2. Account Management: An admin user can now add a committee when
creating a non-admin users account. This is the committee said non-
admin user belongs to and can only be made via an admin account.
This page is now also made accessible from the navigation bar.

Figure 1: . Account Management Committee Adding.

.

3. Session Titles and Descriptions: The session titles and tutorial descrip-
tions are now visible on the main schedule page - enabling an admin
user to understand the topic of the sessions and tutorials without hav-
ing to click on them for details.

17

Figure 2: . Descriptions and titles of varying sessions visible.

4. Metadata: This iteration of the system has accounted for more meta-
data capabilities. For example, the admin is now able to add a chair,
title and the room it will be conducted in when scheduling a session.
This change is also reflected in the YAML file upon generation. A com-
mittee chair is also able add a chair and a room for a presentation in
their own sessions.

Figure 3: . Admin can edit new session details.

5. Sorting: Lists on different pages can now be sorted based on different

18

attributes such as: start time, end time, date and the paper titles,
speakers, committees, and topics in alphabetical order.

Figure 4: . Sorting on start date.

Figure 5: . Sorting on presentation title.

6. Committee modification: The existing implementation had some prob-
lems with state. There was a case where on data modification the
client’s state was changed, even if the backend rejected the changes
due to a malformed request or invalid data entered. Making use of
JavaScript Promises this was solved, as the client’s state now only up-
dates if the underlying database transaction succeeds.

19

Figure 6: top: existing mutation flowchart, bottom: updated mutation
flowchart

7. Duplicate Detection: The duplicate detection system has been en-
hanced to provide more detailed and comprehensive warnings. The
current warnings provide the similarity in percentage, the field(s) in
which this similarity was observed, and the name and email of the
associated individuals.

Figure 7: . Updated duplicate detection.

20

8. Import and Export: another endpoint was added for the export, to sim-
plify file generation. Importing was implemented through the existing
”comittee modification” endpoint. Addition functionality for exporting
in CSV and YAML format has been added, as well as CSV imports.

9. Automatic import of database: For this version of the system, Docker
was employed and configured such that the data in the database is
imported automatically when the container is started. This ensures
automation and consistency throughout the systems.

10. Moving Sessions: Instead of deleting an activity and creating it again
on a different day, admin users can now ’move’ a session to the same
time but on a different day - as the availability permits. This retains
all metadata about the activity, simply changing the date - allowing an
admin to save time.

Figure 8: . Activities can now be moved.

11. Committee Chairs Permissions: Role-based access control mechanisms
have been extended to areas such as schedule editing. Committee chairs
can now view and edit schedules and committees of their own, but
only view the schedules and committee members of other committees.
They are restricted to read-only privileges concerning the schedules of
committees they are not a chair of.

12. UI improvements: Features to enhance the interface were also added.
For example, the description and titles of activities is now visible on the
main schedule page from the admin side, the system no longer glitches
during scrolling, among others.

13. UX improvements: Features to smoothen user experience have been
added. For example, admin receives a confirmatory notification before

21

completely deleting data for an entire year, also as previously men-
tioned, ’Accounts’ is now accessible from the navigation bar through
an admin account instead of solely through the homepage.

Figure 9: . Confirmation message before deleting year.

22

6 Design

Making system design decisions was a bit different than working from scratch.
Often, there was the choice of re-building a given feature from scratch, or re-
use and modify the existing codebase. For example, the ”Import from CSV”
feature 5.8 was implemented purely in the front-end by calling an existing
end-point; ”Export to YAML” on the other hand was implemented by adding
a new end-point to the backend. Both features were built within the existing
project structure.

6.1 Admin Interface

Upon logging in as a superuser or admin user, the main page is displayed,
where 3 buttons redirect to different pages: “Conference Creation,” “Account
management” and “Selection Committee”. The navigation bar is present
after logging in and is persistent across all pages to make navigation more
efficient between the three options. It also contains the option to select or
edit the year, an option that only the admin has.

Figure 10: . Walkthrough of admin interface.

23

6.1.1 Conference Creation

When pressing on “Conference Creation”, the admin is redirected to the
scheduler, where they can create a multi-conference schedule. In the sched-
uler interface, the admin is shown an existing schedule, if one exists for the
selected year, or the option to create a new schedule. When creating a new
schedule, the admin is required to enter the start date and end date and to
add the participating committees. When a schedule already exists, the admin
can edit dates and committees as well as edit individual activities or delete
them. When editing an activity, the admin can change the speaker, modify
the start date and duration, and also add an activity in parallel. There is
also the possibility to add an activity with a specified speaker as well as the
option to export the entire schedule in YAML format, which is accepted by
the ETAPS website. The new functionality that was added handles swapping
sessions. An admin can now press the button “move” located on an activity
and swap places with another activity.

6.1.2 Selection Committee

If the admin chooses “Selection Committee”, they are redirected to the Com-
mittees page. There they are shown a table with all members of a committee
for the specified year in the navigation bar. An admin can commute between
different committees and edit/add members. The admin is also provided with
the possibility to export the table, delete it, or see a general overview of the
members of the selected committee. On the overview page, the admin can
check the improved warnings tab by pressing “warnings”. In the ”warnings”
tab, possible errors can be high similarity in first name, last name, email, and
a person being in more than one committee. The admin can filter from the
warning to see more details about that member in the table. A warning can
be deleted, and if done so by mistake, it can be refreshed from the warnings
tab.

6.1.3 Account Management

Other functionalities of the committee’s page are described in the “Non-
admin” subsection. When selecting “Account Management”, the admin is
shown the list of all users and has the ability to edit, delete, or add users.
When creating a user, the admin can choose its role. Therefore, from this
page, non-admin and admin users can be created.

24

6.2 Non-Admin Interface

Upon logging in as a committee chair, or a non-admin user, one is greeted
with the main page, from where the user can further fork into three different
pages: sessions, committee selection, and overview.

Figure 11: . Walkthrough of non-admin interface.

6.2.1 Sessions

The sessions page opens to the committee of the committee chair and the
current year by default. This page displays all the sessions scheduled within
said committee. The committee chair can also upload papers on this page.
Additionally, sessions for differing years can be accessed here as well. The
user can also navigate to view the schedules of other committees - however,
this is with read-only access. On the page of their own committee, each ses-
sion displays the date it is conducted on, the title, the time slot of the overall

25

session, and the number of presentations in each session, also known as ’slots’.

Upon clicking on a session, the user is taken to a page displaying each pre-
sentation in said session. Metadata such as the chair of the session and room
it will be conducted in can be edited on this page as well. The page also pro-
vides information such as the time slot, duration, title and authors of each
presentation. It is also important to realise each presentation is associated
with a paper. The user can further add a presentation manually, or add one
corresponding to a paper that already exists in the system from ’Add pre-
sentations from uploaded papers’. The committee chair can choose to delete
a paper, and now also select multiple papers as Best Papers.

6.2.2 Committee Selection

This page is concerned with managing a committee. Similar to the previous
page, this page displays the committee members of the committee the user
belongs to, for the current year by default. Attributes such as the first and
last names, email, country and university each member is affiliated with are
displayed on the screen. An entry also has a URL that directs a user to the
personal page of the person corresponding to said entry. A committee chair
can further add a new member to their committee, and view members of
other committees. The permissions for this page are similar to that of the
previous one: user has read and write access for their own committee, and
read-only access for pages concerning other committees - which is unlike the
admin permissions for the same page. A user can further filter entries based
on columns and values as well. This table can now be exported in CSV and
YAML, and imported successfully from CSV as well.

6.2.3 Overview

This page successfully displays an overview of all presentations belonging to
their respective conferences and committees.

26

7 Risk Analysis

This section consists of the identification, prioritization and solution of var-
ious risks during the process. These risks can be divided into two distinct
categories: team and code. The former deals with issues that could be expe-
rienced within human side of the project. This includes teamwork and client
communication. The latter addresses issues that may be encountered within
the system and directly affect the final product and therefore the stakehold-
ers. Each issue is assigned a priority level of high, medium or low based on
how much damage this issue could cause and how fast we have to deal with
it.

7.1 Risks within Team

• Issue: Member absence and/or inconsistency
Priority: High
Solution: Identify reason for absence and/or inconsistency, provide fur-
ther support or redistribute tasks as per necessary.

• Issue: Lack of communication
Priority: High
Solution: Establish communication channels that must be checked reg-
ularly for updates. Lack of communication or miscommunication must
be addressed immediately.

• Issue: Conflict among team members
Priority: High
Solution: Be respectful to your teammates throughout the project.
In the case of conflict, identify the reason for conflict, communicate
honestly and work on conflict resolution.

• Issue: Unclear responsibilities
Priority: Medium
Solution: This can either lead to confusion or double work. Clearly
define roles, and verify in case of any confusion what a members’ re-
sponsibilities are.

• Issue: Technical difficulties
Priority: Low
Solution: Systems should be up and running on everyone’s devices,
and on git. This is so that damage will be minimum in the case that a
member experiences technical difficulties.

27

7.2 Risks within Project

• Issue: Stakeholder Misalignment
Priority: High
Solution: Communicate with clients as much as possible (end of ev-
ery sprint) in order to ensure the features developed align with their
requirements and/or expectations.

• Issue: Quality Assurance
Priority: High
Solution: It is crucial that the implemented features and or updates
are functional, therefore regular testing must be conducted to ensure
the same.

• Issue: Database Failure
Priority: High
Solution: Web-app should be able to detect and gracefully handle
database failures to minimise disruption or data loss. Regular back-
ups of the database should also be taken.

• Issue: Privacy and security concerns
Priority: Medium
Solution: Hash sensitive data, do not collect data that is not necessary,
update outdated packages, provide RBAC for specific features.

• Issue: Maintainability
Priority: Medium
Solution: Use popular open-source libraries, without paid variants.

28

8 Testing

After discussion with our client, it as agreed upon that testing was a relatively
low priority task. The reasoning behind this is that the our product is a
management support system that will only be used by a select few people
who are directly involved in organising the ETAPS conference. Because of
this, the occasional edge case will not be as severe of an issue as it would be
in a product which is used by a wider audience.

However, it is impossible to guarantee that the end product is functional
without any testing. Therefore we used two different testing approaches.

8.1 Manual testing

Manual testing involves executing test cases manually to verify the behaviour
of the system. We considered this important since the system was to be
developed for two main stakeholders, one of which was one of our clients.
This meant we were able to get feedback directly from one of the stakeholders
of the system. Our client was able to give us feedback still after this, proving
places of improvement. Additionally, we also got team members that worked
on different parts of the code to test other parts and assess whether parts of
the system were functional and intuitive.

8.2 Unit testing

The ability to create, edit and view data together, concerns the primary
functionality of the system. Hence, in order to ensure the proper working
of these data operations, we decided to employ unit testing for each func-
tionality. We decided to test the functionality of the GET, POST, PATCH
and DELETE methods for the routers concerning committees, conferences,
exports, programs, sessions, users and years. The framework used to conduct
these tests is PyTest and the methods below have also considered edge cases
in order to ensure robustness.

• GET Methods: These methods are responsible for retrieving data from
the database.
Test: For each of these tests, data is retrieved from the database by
using a unique identifier. An identifier that corresponds to no entry in
the database is also used, to test an edge case.
Verification: The system verifies that the response has a status code
of 200 (OK) and is not null. The ID that does not correspond to an
entry in the database returns a 404 (Not Found) status.

29

• POST Methods: These methods are responsible for sending data to the
database.
Test: For each of these tests, dummy data is sent to the database using
the API endpoint corresponding to a POST request for that type of
data.
Verification: The system again verifies that the response has a status
code of 200 (OK) indicating that the data was posted successfully.

• PATCH Methods: These methods are responsible for modifying or up-
dating entries in the database.
Test: For each of these tests, data is sent to the database using the cor-
responding POST request endpoint. Then, ID of the data is extracted
from the response. Finally, a PATCH request is made updating certain
attributes of the data corresponding to the ID.
Verification: As with the rest, the system verifies that the response
has a status code of 200 (OK) if the entry exists and is updated suc-
cessfully, and 404 (Not Found) if the id does not exist.

• DELETE Methods: These methods are responsible for deleting entries
in the database.
Test: For each of these tests, dummy data is sent to the database via
a POST request, and then deleted using a DELETE request.
Verification: Successful deletion of an entry results in a 200 (OK)
response code, while attempts at deleting an entry that does not exist,
results in a 404 (Not Found) response code.

30

Figure 12: . Passed unit tests using PyTest

31

9 Conclusion

Our final product, has successfully incorporated all the requirements from the
”Must Have” and ”Should Have” sections of the requirements. Throughout
the project, we were able to utilise the strengths of each of our teammates
in varying departments to ensure success.

Our journey throughout the lifespan of this project has come with its own set
of challenges. From struggling a bit to set the system up on everyone’s devices
to bugs that were difficult to fix, as a team, we were able to learn a lot. This
includes learning how to work with frameworks that were new to some of us,
discovering solutions to different problems, gaining insight into ETAPS and
its conference management, as well as effectively collaborating within a team.

This project has been an insightful experience for members of our team,
allowing us to apply the skills honed during the years of our study into
a final project. We believe that our project has indeed satisfied many of
the requirements of our clients and enhanced the overall user experience,
and structure of the system. We would also like to extend our gratitude to
Marieke Huisman and Jan Kofron for their guidance and insights during the
developmental process.

32

10 Future Work

There is much scope to improve this product even further in a next iteration.
Individuals working on future enhancements may begin with the ”Could
Have” section of the requirements, as these were not implemented due to
time constraints and other problems. Additionally, improvements our clients
had not mentioned as ’requirements’ that we noticed during the lifespan of
this project include:

• Changing the Scheduling table: Right now it is a table, which makes it
difficult to arrange multiple sesisons in the same block when they have
different lengths and start times. The reason for this is that each 15
minute interval is actually a row in the table and a session is added
to the row of its start time and extended as row duration to its end
time. In the future, the best solution would be to create a calendar
like schedule instead of a table, since with a table you will always have
to work with indices, duration and so on which are likely to introduce
bugs and create code that is hard to read. Another solution would be
to keep on working with a table, but then all edge cases need to be
considered before writing the functionality.

• Runtime failure handing: It was pretty clear that this program wasn’t
built to be mission critical, prioritizing functionality over robustness,
fail-safes, and error logging. However, if designed well, failures can be
minimized preventing frustration, especially when modifying data in
the database. Implementing chained Promises1 would make the sys-
tem way more robust against unexpected behaviour, since ”things only
happen” if everything goes well. Additionally, the Promise design pat-
tern encourages developers to consider failure at every step.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/Promise#chained_promises

33

References

[1] About ETAPS. https://etaps.org/about/etaps-conferences/.

[2] What is YAML. https://www.redhat.com/en/topics/automation/
what-is-yaml.

[3] Inc. Project Management Institute. Agile Practice Guide. Project Man-
agement Institute, Inc. (PMI), 2017. isbn: 978-1-62825-199-9. url:
https://app.knovel.com/hotlink/toc/id:kpAPG00001/agile-

practice-guide/agile-practice-guide.

[4] What is MongoDB. https://www.mongodb.com/company/what-is-
mongodb.

[5] React. https://react.dev/.

[6] FastAPI features. https://fastapi.tiangolo.com/.

[7] Docker platform overview. https://docs.docker.com/get-started/
overview/.

[8] Github. https://github.com/.

[9] What is Trello. https://trello.com/tour.

[10] Discord. https://discord.com/.

[11] What is MoSCoW and how does it work. https://www.productplan.
com/glossary/moscow-prioritization/.

34

11 APPENDIX

A

GANTT Chart for Planning

Figure 13: . GANTT Chart displaying the planning as scheduled.

35

B

Sorting and Filtering

Figure 14: . Sorting on Start-time.

Figure 15: . Sorting on Title.

36

C

Duplicate detection

Figure 16: . Detailed warnings for duplicates.

37

